Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>3</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>5</td>
</tr>
</tbody>
</table>

1. OVERVIEW OF DOCUMENT
 1.1 Company Overview | 7 |
 1.2 Data Product Overview | 7 |

2. SATELLITE CONSTELLATIONS AND SENSOR OVERVIEW | 9 |
 2.1 PlanetScope Satellite Constellation and Sensor Characteristics | 9 |
 2.2 RapidEye Satellite Constellation and Sensor Characteristics | 10 |

3. PLANETSCOPE IMAGERY PRODUCTS | 11 |
 3.1 PlanetScope Basic Scene Product Specification | 11 |
 3.2 PlanetScope Ortho Scenes Product Specification | 13 |
 3.2.1 PlanetScope Visual Ortho Scene Product Specification | 14 |
 3.2.2 PlanetScope Analytic Ortho Scene Product Specification | 14 |
 3.3 PlanetScope Ortho Tile Product Specification | 15 |
 3.3.1 PlanetScope Visual Ortho Tile Product Specification | 17 |
 3.3.2 PlanetScope Analytic Ortho Tile Product Specification | 18 |

4. RAPIDEYE IMAGERY PRODUCTS | 20 |
 4.1 RapidEye Basic Scene Product Specification | 20 |
 4.2 RapidEye Ortho Tile Product Specification | 22 |
 4.2.1 RapidEye Visual Ortho Tile Product Specification | 23 |
 4.2.2 RapidEye Analytic Ortho Tile Product Specification | 24 |

5. OTHER PROVIDER IMAGERY PRODUCTS | 25 |
 5.1 Landsat 8 Product Specification | 25 |
 5.2 Copernicus Sentinel-2 Product Specification | 26 |

6. PRODUCT PROCESSING | 27 |
 6.1 PlanetScope Processing | 27 |
 6.2 RapidEye Processing | 29 |

7. IMAGERY QUALITY ATTRIBUTES | 31 |
 7.1 Product Geometric Positional Accuracy | 31 |
 7.2 Cloud Cover | 31 |
 7.2.1 PlanetScope | 31 |
 7.2.2 RapidEye | 31 |
 7.3 Band Co-Registration | 32 |
 7.3.1 PlanetScope | 32 |
 7.3.2 RapidEye | 32 |
 7.4 Radiometry and Radiometric Accuracy | 33 |
 7.4.1 PlanetScope | 33 |
 7.4.2 RapidEye | 33 |
8. PRODUCT METADATA

8.1 Ortho Tiles
 8.1.1 PlanetScope
 8.1.2 RapidEye

8.2 Ortho Scenes
 8.2.1 PlanetScope

8.3 Basic Scenes
 8.3.1 PlanetScope
 8.3.2 RapidEye

9. PRODUCT DELIVERY

 9.1 Planet Application Programming Interface (API)
 9.2 Planet Graphical User Interface (GUI)
 9.3 Planet Account Management Tools
 9.4 File Format
 9.5 Bulk Delivery Folder Structure

APPENDIX A - IMAGE SUPPORT DATA
 1. General XML Metadata File
 2. Unusable Data Mask File

APPENDIX B - TILE GRID DEFINITION

List of Figures

FIGURE A: Planet Imagery Product Offerings
FIGURE B: PlanetScope Scene to Ortho Tile Conversion
FIGURE C: PlanetScope Analytic Ortho Tiles with RGB (left) and NIR False-Color Composite (right)
FIGURE D: PlanetScope Analytic Bands
FIGURE E: RapidEye Visual Ortho Tile
FIGURE F: PlanetScope Image Processing Chain
FIGURE G: RapidEye Image Processing Chain
FIGURE A-1: Concepts Behind the Unusable Data Mask File
FIGURE B-1: Layout of UTM Zones
FIGURE B-2: Layout of Tile Grid within a single UTM zone
FIGURE B-3: Illustration of Grid Layout of Rows and Columns for a Single UTM Zone

List of Tables

TABLE A: PlanetScope Constellation and Sensor Specifications
TABLE B: RapidEye Constellation and Sensor Specifications
TABLE C: PlanetScope Satellite Image Product Processing Levels
TABLE D: PlanetScope Analytic Basic Scene Product Attributes
TABLE E: PlanetScope Ortho Scene Product Attributes
TABLE F: PlanetScope Visual Ortho Scene Product Attributes
TABLE G: PlanetScope Analytic Ortho Scene Product Attributes
TABLE H: PlanetScope Ortho Tile Product Attributes
TABLE I: PlanetScope Visual Ortho Tile Product Attributes
TABLE J: PlanetScope Analytic Ortho Tile Product Attributes
TABLE K: RapidEye Satellite Image Product Processing Levels
TABLE L: RapidEye Analytic Basic Scene Product Attributes
TABLE M: RapidEye Ortho Tile Product Attributes
TABLE N: RapidEye Visual Ortho Tile Product Attributes
TABLE O: RapidEye Analytic Ortho Tile Product Attributes
TABLE P: Landsat 8 Product Attributes
TABLE Q: Sentinel-2 Product Attributes
TABLE R: PlanetScope Processing Steps
TABLE T: PlanetScope Ortho Tile GeoJSON Metadata Schema
TABLE U: RapidEye Ortho Tile GeoJSON Metadata Schema
TABLE V: PlanetScope Ortho Scene GeoJSON Metadata Schema
TABLE W: PlanetScope Basic Scene GeoJSON Metadata Schema
TABLE X: RapidEye Basic Scene GeoJSON Metadata Schema
TABLE Y: Planet Data API - Item Types
TABLE Z: Planet Data API - Asset Types
TABLE A-1: General XML Metadata File Field Descriptions

Disclaimer

This document is designed as a general guideline for customers interested in acquiring Planet imagery products and services. Planet takes an agile and iterative approach to its technology, and therefore may make changes to the product(s) described in this document.
Glossary

The following list defines terms used to describe Planet’s satellite imagery products.

Alpha Mask
An alpha mask is an image channel with binary values that can be used to render areas of the image product transparent where no data is available.

Application Programming Interface (API)
A set of routines, protocols, and tools for building software applications.

Blackfill
Non-imaged pixels or pixels outside of the buffered area of interest that are set to black. They may appear as pixels with a value of “0” or as “noData” depending on the viewing software.

Digital Elevation Model (DEM)
The representation of continuous elevation values over a topographic surface by a regular array of z-values, referenced to a common datum. DEMs are typically used to represent terrain relief.

GeoJSON
A standard for encoding geospatial data using JSON (see JSON below).

GeoTIFF
An image format with geospatial metadata suitable for use in a GIS or other remote sensing software.

Ground Sample Distance (GSD)
The distance between pixel centers, as measured on the ground. It is mathematically calculated based on optical characteristics of the telescope, the altitude of the satellite, and the size and shape of the CCD sensor.

Graphical User Interface (GUI)
The web-based graphical user interfaces allows users to browse, preview and download Planet’s imagery products.

International Space Station (ISS) Orbit
International Space Station (ISS) orbits at a 51.6°inclination at approximately 400 km altitude. Planet deploys satellites from the ISS, each having a similar orbit.

JavaScript Object Notation (JSON)
Text-based data interchange format used by the Planet API.

Landsat 8
Freely available dataset offered through NASA and the United States Geological Survey.

Metadata
Data delivered with Planet’s imagery products that describes the products content and context and can be used to conduct analysis or further processing.

Nadir
The point on the ground directly below the satellite.
Near-Infrared (NIR)
Near Infrared is a region of the electromagnetic spectrum.

Orthorectification
The process of removing and correcting geometric image distortions introduced by satellite collection geometry, pointing error, and terrain variability.

Ortho Tile
Ortho Tiles are Planet’s core product lines of high-resolution satellite images. Ortho tiles are available in two different product formats: Visual and Analytic, each offered in GeoTIFF format.

PlanetScope
The first three generations of Planet’s optical systems are referred to as PlanetScope 0, PlanetScope 1, and PlanetScope 2.

Radiometric Correction
The correction of variations in data that are not caused by the object or image being scanned. These include correction for relative radiometric response between detectors, filling non-responsive detectors and scanner inconsistencies.

Reflectance Coefficient
The reflectance coefficient provided in the metadata is used as a multiplicative to convert Analytic TOA Radiance values to TOA Reflectance.

RapidEye
RapidEye refers to the five-satellite constellation in operation since 2009.

Scene
A single image captured by a PlanetScope satellite.

Sensor Correction
The correction of variations in the data that are caused by sensor geometry, attitude and ephemeris.

Sentinel-2
Copernicus Sentinel-2 is a multispectral imaging satellite constellation operated by the European Space Agency.

Sun Azimuth
The angle of the sun as seen by an observer located at the target point, as measured in a clockwise direction from the North.

Sun Elevation
The angle of the sun above the horizon.

Sun Synchronous Orbit (SSO)
A geocentric orbit that combines altitude and inclination in such a way that the satellite passes over any given point of the planet’s surface at the same local solar time.

Tile Grid System
Ortho tiles are based on a worldwide, fixed UTM grid system. The grid is defined in 24 km by 24 km tile centers, with 1 km of overlap (each tile has an additional 500 m overlap with adjacent tiles), resulting in 25 km by 25 km tiles.
1. OVERVIEW OF DOCUMENT

This document describes Planet satellite imagery products. It is intended for users of satellite imagery interested in working with Planet’s product offerings.

1.1. Company Overview

Planet uses an agile aerospace approach for the design of its satellites, mission control and operations systems; and the development of its web-based platform for imagery processing and delivery. Planet employs an “always on” image-capturing method as opposed to the traditional tasking model used by most satellite companies today.

1.2. Data Product Overview

Planet operates the PlanetScope (PS) and RapidEye (RE) Earth-imaging constellations. Imagery is collected and processed in a variety of formats to serve different use cases, be it mapping, deep learning, disaster response, precision agriculture, or simple temporal image analytics to create rich information products.

PlanetScope satellite imagery is captured as a continuous strip of single frame images known as “scenes.” Scenes may be acquired as a single RGB (red, green, blue) frame or a split-frame with a RGB half and a NIR (near-infrared) half depending on the capability of the satellite.

Planet offers three product lines for PlanetScope imagery: a Basic Scene product, an Ortho Scene product, and an Ortho Tile product. The Basic Scene product is a scaled Top of Atmosphere Radiance (at sensor) and sensor-corrected product. The Basic Scene product is designed for users with advanced image processing and geometric correction capabilities. The product is not orthorectified or corrected for terrain distortions. Ortho Scenes represent the single-frame image captures as acquired by a PlanetScope satellite with additional post processing applied. Ortho Tiles are multiple orthorectified scenes in a single strip that have been merged and then divided according to a defined grid.
Figure A: Planet Imagery Product Offerings

PLANET IMAGERY

PLANET CONSTELLATION

RAPID EYE
- 6M km²/DAY

- Basic Scene
- Ortho Tile

PLANETSCOPE
- 150M km²/DAY

- Basic Scene
- Ortho Scene
- Ortho Tile

Will be available on some PS2 imagery
2. SATELLITE CONSTELLATION AND SENSOR OVERVIEW

2.1 PlanetScope Satellite Constellation and Sensor Characteristics

The PlanetScope satellite constellation consists of multiple launches of groups of individual satellites. Therefore, on-orbit capacity is constantly improving in capability or quantity, with technology improvements deployed at a rapid pace.

Each PlanetScope satellite is a CubeSat 3U form factor (10 cm by 10 cm by 30 cm). The complete PlanetScope constellation of approximately 120 satellites will be able to image the entire land surface of the Earth every day (equating to a daily collection capacity of 150 million km²/day).

<table>
<thead>
<tr>
<th>Mission Characteristic</th>
<th>International Space Station Orbit</th>
<th>Sun Synchronous Orbit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbit Altitude (reference)</td>
<td>400 km (51.6° inclination)</td>
<td>475 km (-98° inclination)</td>
</tr>
<tr>
<td>Max/Min Latitude Coverage</td>
<td>±52° (depending on season)</td>
<td>±81.5° (depending on season)</td>
</tr>
<tr>
<td>Equator Crossing Time</td>
<td>Variable</td>
<td>9:30 - 11:30 am (local solar time)</td>
</tr>
<tr>
<td>Sensor Type</td>
<td>Three-band frame imager or four-band frame imager with a split-frame NIR filter</td>
<td>Three-band frame imager or four-band frame imager with a split-frame NIR filter</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>Blue 455 – 515 nm</td>
<td>Blue 455 – 515 nm</td>
</tr>
<tr>
<td></td>
<td>Green 500 – 590 nm</td>
<td>Green 500 – 590 nm</td>
</tr>
<tr>
<td></td>
<td>Red 590 – 670 nm</td>
<td>Red 590 – 670 nm</td>
</tr>
<tr>
<td></td>
<td>NIR 780 – 860 nm</td>
<td>NIR 780 – 860 nm</td>
</tr>
<tr>
<td>Ground Sampling Distance (nadir)</td>
<td>3.0 m (approximate)</td>
<td>3.7 m (approximate)</td>
</tr>
<tr>
<td>Frame Size</td>
<td>20 km x 12 km (approximate)</td>
<td>24.6 km x 16.4 km (approximate)</td>
</tr>
<tr>
<td>Maximum Image Strip per orbit</td>
<td>8,100 km²</td>
<td>20,000 km²</td>
</tr>
<tr>
<td>Revisit Time</td>
<td>Variable</td>
<td>Daily at nadir (early 2017)</td>
</tr>
<tr>
<td>Image Capture Capacity</td>
<td>Variable</td>
<td>150 million km²/day (early 2017)</td>
</tr>
<tr>
<td>Camera Dynamic Range</td>
<td>12-bit</td>
<td>12-bit</td>
</tr>
</tbody>
</table>
2.2 RapidEye Satellite Constellation and Sensor Characteristics

The RapidEye satellite constellation consists of five satellites collectively able to collect over 6 million square kilometers of data per day at 6.5 meter GSD (at nadir). Each satellite measures less than one cubic meter and weighs 150 kg (bus + payload). All five satellites are equipped with identical sensors and are located in the same orbital plane.

Table B: RapidEye Constellation and Sensor Specifications

<table>
<thead>
<tr>
<th>Mission Characteristic</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Satellites</td>
<td>5</td>
</tr>
<tr>
<td>Orbit Altitude</td>
<td>630 km in Sun-Synchronous Orbit</td>
</tr>
<tr>
<td>Equator Crossing Time</td>
<td>11:00 am local time (approximately)</td>
</tr>
<tr>
<td>Sensor Type</td>
<td>Multispectral push broom</td>
</tr>
<tr>
<td>Spectral Bands</td>
<td>Blue 440 – 510 nm</td>
</tr>
<tr>
<td></td>
<td>Green 520 – 590 nm</td>
</tr>
<tr>
<td></td>
<td>Red 630 – 685 nm</td>
</tr>
<tr>
<td></td>
<td>Red Edge 690 – 730 nm</td>
</tr>
<tr>
<td></td>
<td>NIR 760 – 850 nm</td>
</tr>
<tr>
<td>Ground Sampling Distance (nadir)</td>
<td>6.5 m</td>
</tr>
<tr>
<td>Swath Width</td>
<td>77 km</td>
</tr>
<tr>
<td>Maximum Image Strip per Orbit</td>
<td>Up to 1500 km of image data per orbit</td>
</tr>
<tr>
<td>Revisit Time</td>
<td>Daily (off-nadir) / 5.5 days (at nadir)</td>
</tr>
<tr>
<td>Image Capture Capacity</td>
<td>>6 million km²/day</td>
</tr>
<tr>
<td>Camera Dynamic Range</td>
<td>12-bit</td>
</tr>
</tbody>
</table>
3. PLANETSCOPE IMAGERY PRODUCTS

PlanetScope imagery products are available as either individual Basic Scenes, Ortho Scenes, or Ortho Tile products.

Table C: PlanetScope Satellite Image Product Processing Levels

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Product Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>PlanetScope Basic Scene</td>
<td>Scaled Top of Atmosphere Radiance (at sensor) and sensor corrected product. The Basic Scene product is designed for users with advanced image processing and geometric correction capabilities. This product has scene based framing and is not projected to a cartographic projection. Radiometric and sensor corrections applied to the data.</td>
<td>Level 1B</td>
</tr>
<tr>
<td>PlanetScope Ortho Scene</td>
<td>Orthorectified, scaled Top of Atmosphere Radiance (at sensor) image product suitable for analytic and visual applications. This product has scene based framing and projected to a cartographic projection.</td>
<td>Level 3B</td>
</tr>
<tr>
<td>PlanetScope Ortho Tile</td>
<td>Radiometric and sensor corrections applied to the data. Imagery is orthorectified and projected to a UTM projection.</td>
<td>Level 3A</td>
</tr>
</tbody>
</table>

The name of each acquired PlanetScope image is designed to be unique and allow for easier recognition and sorting of the imagery. It includes the date and time of capture, as well as the id of the satellite that captured it. The name of each downloaded image product is composed of the following elements:

<acquisition date>_<acquisition time>_<satellite_id>_<productLevel><bandProduct>.<extension>

3.1 PlanetScope Basic Scene Product Specification

The PlanetScope Basic Scene product is a Scaled Top of Atmosphere Radiance (at sensor) and sensor corrected product, providing imagery as seen from the spacecraft without correction for any geometric distortions inherent in the imaging process. It has a scene based framing, and is not mapped to a cartographic projection. This product line is available in GeoTIFF and NITF 2.1 formats.

The PlanetScope Basic Scene product is a multispectral analytic data product from the satellite constellation. This product has not been processed to remove distortions caused by terrain and allows analysts to derive information products for data science and analytics.
The Basic Scene product is designed for users with advanced image processing capabilities and a desire to geometrically correct the product themselves. The imagery data is accompanied by Rational Polynomial Coefficients (RPCs) to enable orthorectification by the user.

The geometric sensor corrections applied to this product correct for:
- Optical distortions caused by sensor optics
- Co-registration of bands

The table below describes the attributes for the PlanetScope Basic Scene product:

Table D: PlanetScope Basic Scene Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Product Components and Format** | The PlanetScope Basic Scene product consists of the following file components:
 - Image File – GeoTIFF format
 - Metadata File – XML format
 - Rational Polynomial Coefficients - XML format
 - Thumbnail File – GeoTIFF format
 - Unusable Data Mask (UDM) File – GeoTIFF format |
| **Information Content** | |
| Analytic Bands | 3-band natural color (red, green, blue) or 4-band multispectral image (blue, green, red, near-infrared) |
| Ground Sample Distance | 3.7 m (at reference altitude 475 km) |
| Processing | |
| Pixel Size (orthorectified)| N/A |
| Bit Depth | Analytic (DN): 12-bit
 Analytic (Radiance - W m⁻² sr⁻¹ μm⁻¹): 16-bit |
| Positional Accuracy | Less than 10 m RMSE |
| Radiometric Corrections | • Conversion to absolute radiometric values based on calibration coefficients
 • Radiometric values scaled by 100 to reduce quantization error
 • Calibration coefficients regularly monitored and updated with on-orbit calibration techniques. |
| Map Projection | N/A |
3.2 PlanetScope Ortho Scenes Product Specification

PlanetScope satellites collect imagery as a series of overlapping framed scenes, and these Scene products are not organized to any particular tiling grid system. The Ortho Scene products enable users to create seamless imagery by stitching together PlanetScope Ortho Scenes of their choice and clipping it to a tiling grid structure as required.

The PlanetScope Ortho Scene product is orthorectified and the product was designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. It has been processed to remove distortions caused by terrain and can be used for cartographic purposes. The Ortho Scenes are delivered as visual (RGB) and analytic products. Ortho Scenes are radiometrically-, sensor-, and geometrically-corrected products that are projected to a cartographic map projection. The geometric correction uses fine Digital Elevation Models (DEMs) with a post spacing of between 30 and 90 meters.

Ground Control Points (GCPs) are used in the creation of every image and the accuracy of the product will vary from region to region based on available GCPs.

The table below describes the attributes for the PlanetScope Ortho Scene product:

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Components and Format</td>
<td>PlanetScope Ortho Scene product consists of the following file components:</td>
</tr>
<tr>
<td></td>
<td>• Image File – GeoTIFF format</td>
</tr>
<tr>
<td></td>
<td>• Metadata File – XML format</td>
</tr>
<tr>
<td></td>
<td>• Thumbnail File – GeoTIFF format</td>
</tr>
<tr>
<td></td>
<td>• Unusable Data Mask (UDM) file – GeoTIFF format</td>
</tr>
<tr>
<td>Product Orientation</td>
<td>Map North up</td>
</tr>
<tr>
<td>Product Framing</td>
<td>Scene Based</td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>Visual: 8-bit</td>
</tr>
<tr>
<td></td>
<td>Analytic (Radiance - W m(^{-2}) sr(^{-1}) μm(^{-1})): 16-bit</td>
</tr>
<tr>
<td>Product Size</td>
<td>Nominal scene size is approximately 24 km by 7 km, but varies by altitude.</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model. Orthorectification uses GCPs and fine DEMs (30 m to 90 m posting).</td>
</tr>
<tr>
<td>Horizontal Datum</td>
<td>WGS84</td>
</tr>
<tr>
<td>Map Projection</td>
<td>UTM</td>
</tr>
<tr>
<td>Resampling Kernel</td>
<td>Cubic Convolution</td>
</tr>
</tbody>
</table>
3.2.1 PlanetScope Visual Ortho Scene Product Specification

The PlanetScope Visual Ortho Scene product is orthorectified and color-corrected (using a color curve). This correction attempts to optimize colors as seen by the human eye providing images as they would look if viewed from the perspective of the satellite. This product has been processed to remove distortions caused by terrain and can be used for cartographic mapping and visualization purposes. This correction also eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. Additionally, a correction is made to the sun angle in each image to account for differences in latitude and time of acquisition.

The Visual Ortho Scene product is optimal for simple and direct use of an image. It is designed and made visually appealing for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. The product can be used and ingested directly into a Geographic Information System.

Table F: PlanetScope Visual Ortho Scene Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Visual Bands</td>
<td>3-band natural color (red, green, blue)</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>3.7 m (at reference altitude 475 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>8-bit</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model. Space-craft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Color Enhancements</td>
<td>Enhanced for visual use and corrected for sun angle</td>
</tr>
</tbody>
</table>

3.2.2 PlanetScope Analytic Ortho Scene Product Specification

The PlanetScope Analytic Ortho Scene product is orthorectified, multispectral data from the satellite constellation. Analytic products are calibrated multispectral imagery products that have been processed to allow analysts to derive information products for data science and analytics. This product is designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. The product has been processed to remove distortions caused by terrain and can be used for many data science and analytic applications. It eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. The PlanetScope Analytic Ortho Scene is optimal for value-added image processing such as land cover classifications. In addition to orthorectification, the imagery has radiometric corrections applied to correct for any sensor artifacts and transformation to at-sensor radiance.
Table G: PlanetScope Analytic Ortho Scene Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Analytic Bands</td>
<td>3-band multispectral image (red, green, blue) 4-band multispectral image (blue, green, red, near-infrared)</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>3.7 m (at reference altitude 475 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>Analytic (DN): 12-bit Analytic (Radiance - W m⁻² sr⁻¹ μm⁻¹): 16-bit</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model. Space-craft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Radiometric Corrections</td>
<td>• Conversion to absolute radiometric values based on calibration coefficients • Radiometric values scaled by 100 to reduce quantization error • Calibration coefficients regularly monitored and updated with on-orbit calibration techniques.</td>
</tr>
</tbody>
</table>

3.3 PlanetScope Ortho Tile Product Specification

The PlanetScope Ortho Tile products offer PlanetScope Satellite imagery orthorectified as individual 25 km by 25 km tiles referenced to a fixed, standard image tile grid system. This product was designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. It has been processed to remove distortions caused by terrain and can be used for cartographic purposes.

For PlanetScope split-frame satellites, imagery is collected as a series of overlapping framed scenes from a single satellite in a single pass. These scenes are subsequently orthorectified and an ortho tile is then generated from a collection of consecutive scenes, typically 4 to 5. The process of conversion of framed scene to ortho tile is outlined in the figure below.

The PlanetScope Ortho Tile products are radiometrically-, sensor-, and geometrically-corrected and aligned to a cartographic map projection. The geometric correction uses fine DEMs with a post spacing of between 30 and 90 meters. GCPs are used in the creation of every image and the accuracy of the product will vary from region to region based on available GCPs.
Figure B: PlanetScope Scene to Ortho Tile Conversion

The table below describes the attributes for the PlanetScope Ortho Tile product:

Table H: PlanetScope Ortho Tile Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Components and Format</td>
<td>PlanetScope Ortho Tile product consists of the following file components:</td>
</tr>
<tr>
<td></td>
<td>• Image File – GeoTIFF format</td>
</tr>
<tr>
<td></td>
<td>• Metadata File – XML format</td>
</tr>
<tr>
<td></td>
<td>• Thumbnail File – GeoTIFF format</td>
</tr>
<tr>
<td></td>
<td>• Unusable Data Mask (UDM) File – GeoTIFF format</td>
</tr>
<tr>
<td>Product Orientation</td>
<td>Map North Up</td>
</tr>
<tr>
<td>Product Framing</td>
<td>PlanetScope Ortho Tiles are based on a worldwide, fixed UTM grid system. The grid is defined in 24 km by 24 km tile centers, with 1 km of overlap (each tile has an additional 500 m overlap with adjacent tiles), resulting in 25 km by 25 km tiles.</td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3.125 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>16-bit</td>
</tr>
<tr>
<td>Product Size</td>
<td>Tile size is 25 km (8000 lines) by 25 km (8000 columns). 5 to 500 Mbytes per Tile for 4 bands at 3.125 m pixel size after orthorectification.</td>
</tr>
</tbody>
</table>
3.3.1 PlanetScope Visual Ortho Tile Product Specification

The PlanetScope Visual Ortho Tile product is orthorectified and color-corrected (using a color curve). This correction attempts to optimize colors as seen by the human eye providing images as they would look if viewed from the perspective of the satellite. It has been processed to remove distortions caused by terrain and can be used for cartographic mapping and visualization purposes. It eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. Additionally, a correction is made to the sun angle in each image to account for differences in latitude and time of acquisition.

The Visual product is optimal for simple and direct use of the image. It is designed and made visually appealing for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. The product can be used and ingested directly into a Geographic Information System.

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting).</td>
</tr>
<tr>
<td>Horizontal Datum</td>
<td>WGS84</td>
</tr>
<tr>
<td>Map Projection</td>
<td>UTM</td>
</tr>
<tr>
<td>Resampling Kernel</td>
<td>Cubic Convolution</td>
</tr>
</tbody>
</table>

Table I: PlanetScope Visual Ortho Tile Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Visual Bands</td>
<td>3-band natural color (red, green, blue).</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>3.7 m (at reference altitude 475 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3.125 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>8-bit</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model, bands are co-registered, and spacecraft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Color Enhancements</td>
<td>Enhanced for visual use and corrected for sun angle</td>
</tr>
</tbody>
</table>
3.3.2 PlanetScope Analytic Ortho Tile Product Specification

The PlanetScope Analytic Ortho Tile product is orthorectified, multispectral data from the satellite constellation. Analytic products are calibrated multispectral imagery products that have been processed to allow analysts to derive information products for data science and analytics. This product is designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. It has been processed to remove distortions caused by terrain and can be used for many data science and analytic applications. It eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. The orthorectified visual imagery is optimal for value-added image processing including vegetation indices, land cover classifications, etc. In addition to orthorectification, the imagery has radiometric corrections applied to correct for any sensor artifacts and transformation to scaled at-sensor radiance.

Figure C: PlanetScope Analytic Ortho Tiles with RGB (left) and NIR False-Color Composite (right)
Table J: PlanetScope Analytic Ortho Tile Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Analytic Bands</td>
<td>4-band multispectral image (blue, green, red, near-infrared).</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>3.7 m (at reference altitude 475 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>3.125 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>Analytic (DN): 12-bit</td>
</tr>
<tr>
<td></td>
<td>Analytic (Radiance - W m-2 sr-1 μm-1): 16-bit</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model, bands are co-registered, and spacecraft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Radiometric Corrections</td>
<td>• Conversion to absolute radiometric values based on calibration coefficients</td>
</tr>
<tr>
<td></td>
<td>• Radiometric values scaled by 100 to reduce quantization error</td>
</tr>
<tr>
<td></td>
<td>• Calibration coefficients regularly monitored and updated with on-orbit calibration techniques.</td>
</tr>
</tbody>
</table>

Figure D: PlanetScope Analytic Bands
4. RAPIDEYE IMAGERY PRODUCTS

RapidEye imagery products are available in two different processing levels to be directly applicable to customer needs.

Table K: RapidEye Satellite Image Product Processing Levels

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Product Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RapidEye Basic Scene Product</td>
<td>Radiometric and sensor corrections applied to the data. On-board spacecraft attitude and ephemeris applied to the data.</td>
<td>Level 1B</td>
</tr>
<tr>
<td>RapidEye Ortho Tile Product</td>
<td>Radiometric and sensor corrections applied to the data. Imagery is orthorectified using the RPCs and an elevation model.</td>
<td>Level 3A</td>
</tr>
</tbody>
</table>

The name of each acquired RapidEye image is designed to be unique and allow for easier recognition and sorting of the imagery. It includes the date and time of capture, as well as the id of the satellite that captured it. The name of each downloaded image product is composed of the following elements:

RapidEye Ortho Tiles:
<tileid><acquisition_date><satellite_id><productLevel><productType>.<extension>

RapidEye Basic Scenes:
<acquisition_date>_<satellite_id>_<productLevel>_<bandnumber>.<extension>

4.1 RapidEye Basic Scene Product Specification

The RapidEye Basic product is the least processed of the available RapidEye imagery products. This product is designed for customers with advanced image processing capabilities and a desire to geometrically correct the product themselves. This product line will be available in GeoTIFF and NITF formats.

The RapidEye Basic Scene product is radiometrically- and sensor-corrected, providing imagery as seen from the spacecraft without correction for any geometric distortions inherent in the imaging process, and is not mapped to a cartographic projection. The imagery data is accompanied by all spacecraft telemetry necessary for the processing of the data into a geo-corrected form, or when matched with a stereo pair, for the generation of digital elevation data. Resolution of the images is 6.5 meters GSD at nadir. The images are resampled to a coordinate system defined by an idealized basic camera model for band alignment.

The radiometric corrections applied to this product are:
- Correction of relative differences of the radiometric response between detectors
- Non-responsive detector filling which fills null values from detectors that are no longer responding
- Conversion to absolute radiometric values based on calibration coefficients

The geometric sensor corrections applied to this product correct for:
- Internal detector geometry which combines the two sensor chipsets into a virtual array
- Optical distortions caused by sensor optics
- Registration of all bands together to ensure all bands line up with each other correctly
The table below lists the product attributes for the RapidEye Basic Scene product.

Table L: RapidEye Basic Scene Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Components and Format</td>
<td>RapidEye Basic Scene product consists of the following file components:</td>
</tr>
<tr>
<td></td>
<td>• Image File – Image product delivered as a group of single-band NITF or GeoTIFF files with associated RPC values. Bands are co-registered.</td>
</tr>
<tr>
<td></td>
<td>• Metadata File – XML format metadata file and GeoJSON metadata available</td>
</tr>
<tr>
<td></td>
<td>• Unusable Data Mask (UDM) File – GeoTIFF format</td>
</tr>
<tr>
<td></td>
<td>• Spacecraft information (SCI) file - XML format and contains additional information related to spacecraft attitude, spacecraft ephemeris, spacecraft temperature measurements, line imaging times, camera geometry, and radiometric calibration data.</td>
</tr>
<tr>
<td></td>
<td>• Browse Image - GeoTIFF format</td>
</tr>
<tr>
<td>Product Orientation</td>
<td></td>
</tr>
<tr>
<td>Spacecraft/Sensor Orientation</td>
<td></td>
</tr>
<tr>
<td>Product Framing</td>
<td>Geographic based framing – a geographic region is defined by two corners. The product width is close to the full image swath as observed by all bands (77 km at nadir, subject to minor trimming of up to 3 km during processing) with a product length</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground Sample Distance (nadir)</td>
<td>6.5 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>16-bit</td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>• Variable number of pixels (less than 11980 per line) and up to a maximum of 46154 lines per band.</td>
</tr>
<tr>
<td></td>
<td>• 462 Mbytes/25 km along track for 5 bands.</td>
</tr>
<tr>
<td></td>
<td>• Maximum 5544 Mbytes.</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Idealized sensor, orbit and attitude models. Bands are co-registered.</td>
</tr>
<tr>
<td>Horizontal Datum</td>
<td>WGS84</td>
</tr>
<tr>
<td>Map Projection</td>
<td>N/A</td>
</tr>
<tr>
<td>Resampling Kernel</td>
<td>Cubic Convolution</td>
</tr>
</tbody>
</table>

© Planet Labs Inc 2017
4.2 RapidEye Ortho Tile Product Specification

The RapidEye Ortho Tile products offer RapidEye Satellite imagery orthorectified as individual 25 km by 25 km tiles. This product was designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. It has been processed to remove distortions caused by terrain and can be used for many cartographic purposes.

The RapidEye Ortho Tile products are radiometrically-, sensor- and geometrically-corrected and aligned to a cartographic map projection. The geometric correction uses fine DEMs with a post spacing of between 30 and 90 meters. GCPs are used in the creation of every image and the accuracy of the product will vary from region to region based on available GCPs. RapidEye Ortho Tile products are output as 25 km by 25 km tiles referenced to a fixed, standard RapidEye image tile grid system.

The table below lists the product attributes for the RapidEye Ortho Tile product.

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Product Components and Format** | Rapideye Ortho Tile product consists of the following file components:
• Image File - GeoTIFF file that contains image data and geolocation information
• Metadata File - XML format metadata file and GeoJSON metadata available
• Thumbnail File - GeoTIFF format
• Unusable Data Mask (UDM) File - GeoTIFF format |
| **Product Orientation** | Map North up |
| **Product Framing** | Rapideye Ortho Tiles are based on a worldwide, fixed UTM grid system. The grid is defined in 24 km by 24 km tile centers, with 1 km of overlap (each tile has an additional 500 m overlap with adjacent tiles), resulting in 25 km by 25 km tiles. |
| **Pixel Size (orthorectified)** | 5 m |
| **Bit Depth** | Visual: 8-bit
Analytic (Radiance - W m\(^{-2}\) sr\(^{-1}\) μm\(^{-1}\)): 16-bit |
| **Product Size** | Tile size is 25 km (5000 lines) by 25 km (5000 columns). 250 Mbytes per Tile for 5 bands at 5 m pixel size after orthorectification. |
| **Geometric Corrections** | Sensor-related effects are corrected using sensor telemetry and a sensor model, bands are co-registered, and spacecraft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting). |
| **Horizontal Datum** | WGS84 |
| **Map Projection** | UTM |
| **Resampling Kernel** | Cubic Convolution |
4.2.1 RapidEye Visual Ortho Tile Product Specification

The RapidEye Visual Ortho Tile product is orthorectified and color-corrected (using a color curve). This correction attempts to optimize colors as seen by the human eye providing images as they would look if viewed from the perspective of the satellite. It has been processed to remove distortions caused by terrain and can be used for cartographic mapping and visualization purposes. It eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. Additionally, a correction is made to the sun angle in each image to account for differences in latitude and time of acquisition.

The Visual product is optimal for simple and direct use of the image. It is designed and made visually appealing for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. The product can be used and ingested directly into a Geographic Information System.

Below is a sample of a RapidEye Visual Ortho Tile:

Figure E: RapidEye Visual Ortho Tile
Table N: RapidEye Visual Ortho Tile Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Visual Bands</td>
<td>3-band natural color (red, green, blue)</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>6.5 m (at reference altitude 630 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>5 m</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model, bands are co-registered, and spacecraft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Radiometric Corrections</td>
<td></td>
</tr>
<tr>
<td>Color Enhancements</td>
<td>Enhanced for visual use and corrected for sun angle</td>
</tr>
</tbody>
</table>

4.2.2 RapidEye Analytic Ortho Tile Product Specification

The RapidEye Analytic Ortho Tile product is orthorectified, multispectral data from the RapidEye satellite constellation. This product is designed for a wide variety of applications that require imagery with an accurate geolocation and cartographic projection. It has been processed to remove distortions caused by terrain and can be used for many data science and analytic applications. It eliminates the perspective effect on the ground (not on buildings), restoring the geometry of a vertical shot. The orthorectified imagery is optimal for value-added image processing including vegetation indices, land cover classifications, etc. In addition to orthorectification, the imagery has radiometric corrections applied to correct for any sensor artifacts and transformation to at-sensor radiance.

Table O: RapidEye Analytic Ortho Tile Product Attributes

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Analytic Bands</td>
<td>5-band multispectral image (blue, green, red, red edge, near-infrared)</td>
</tr>
<tr>
<td>Ground Sample Distance</td>
<td>6.5 m (at reference altitude 630 km)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size (orthorectified)</td>
<td>5 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>16-bit</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>Sensor-related effects are corrected using sensor telemetry and a sensor model, bands are co-registered, and spacecraft-related effects are corrected using attitude telemetry and best available ephemeris data. Orthorectified using GCPs and fine DEMs (30 m to 90 m posting) to <10 m RMSE positional accuracy.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>Less than 10 m RMSE</td>
</tr>
<tr>
<td>Radiometric Corrections</td>
<td></td>
</tr>
<tr>
<td>Color Enhancements</td>
<td>Enhanced for visual use and corrected for sun angle</td>
</tr>
</tbody>
</table>
5. OTHER PROVIDER IMAGERY PRODUCTS

Planet provides access to two other freely available datasets: Landsat 8, operated by the NASA and the United States Geological Survey, and Sentinel-2, operated by the European Space Agency. The goal is to make these products easily available to Planet users to augment their analyses.

5.1 Landsat 8 Product Specification

For detailed characteristics of the Landsat 8 sensor and mission please refer to the official Landsat 8 documentation which can be found here: https://landsat.usgs.gov/landsat-8

Table P: Landsat 8 data properties

<table>
<thead>
<tr>
<th>Product Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Content</td>
<td></td>
</tr>
<tr>
<td>Analytic Bands</td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>Band 8</td>
</tr>
<tr>
<td>Visible, NIR, SWIR</td>
<td>Band 1-7 and Band 9 (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR 1, SWIR 2, Cirrus)</td>
</tr>
<tr>
<td>TIR</td>
<td>Band 10, 11 (TIR-1, TIR-2)</td>
</tr>
<tr>
<td>Processing</td>
<td></td>
</tr>
<tr>
<td>Pixel Size</td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>15 m</td>
</tr>
<tr>
<td>Visible, NIR, SWIR</td>
<td>30 m</td>
</tr>
<tr>
<td>TIR</td>
<td>100 m</td>
</tr>
<tr>
<td>Bit Depth</td>
<td>12 bit data depth, distributed as 16 bit data for easier processing</td>
</tr>
<tr>
<td>Geometric Corrections</td>
<td>The Geometric Processing Subsystem (GPS) creates L1 geometrically corrected imagery (L1G) from LIR products. The geometrically corrected products can be systematic terrain corrected (L1Gt) or precision terrain-corrected products (L1T). The GPS generates a satellite model, prepares a resampling grid, and resamples the data to create an L1Gt or L1T product. The GPS performs sophisticated satellite geometric correction to create the image according to the map projection and orientation specified for the L1 standard product.</td>
</tr>
<tr>
<td>Positional Accuracy</td>
<td>12 m CE90</td>
</tr>
</tbody>
</table>
| Radiometric Corrections| • Converts the brightness of the LOR image pixels to absolute radiance in preparation for geometric correction.
 • Performs radiometric characterization of LOR images by locating radiometric artifacts in images.
 • Corrects radiometric artifacts and converts the image to radiance. |
| Metadata | Landsat 8 MTL text file |
5.2 Copernicus Sentinel-2 Product Specification

For detailed characteristics of the Sentinel-2 sensor and mission please refer to the official Sentinel-2 documentation which can be found here:
https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/product-types/level-1c

<table>
<thead>
<tr>
<th>Table Q: Sentinel-2 Data Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Attribute</td>
</tr>
<tr>
<td>Information Content</td>
</tr>
<tr>
<td>Analytic Bands</td>
</tr>
<tr>
<td>Visible, NIR</td>
</tr>
<tr>
<td>RedEdge and NIR</td>
</tr>
<tr>
<td>SWIR</td>
</tr>
<tr>
<td>Aerosol, Water Vapor, Cirrus</td>
</tr>
<tr>
<td>Processing</td>
</tr>
<tr>
<td>Pixel Size</td>
</tr>
<tr>
<td>Visible, NIR (4 bands)</td>
</tr>
<tr>
<td>RedEdge, NIR (6 bands)</td>
</tr>
<tr>
<td>SWIR (2 bands)</td>
</tr>
<tr>
<td>Cirrus, Aerosol, Water Vapor (3 bands)</td>
</tr>
<tr>
<td>Bit Depth</td>
</tr>
</tbody>
</table>

- Resampling on the common geometry grid for registration between the Global Reference Image (GRI) and the reference band.
- Collection of the tie-points from the two images for registration between the GRI and the reference band.
- Tie-points filtering for image-GRI registration: filtering of the tie-points over several areas. A minimum number of tie-points is required.
- Refinement of the viewing model using the initialised viewing model and GCPs. The output refined model ensures registration between the GRI and the reference band.
- Resampling grid computation: enabling linking of the native geometry image to the target geometry image (ortho-rectified).
- Resampling of each spectral band in the geometry of the ortho-image using the resampling grids and an interpolation filter.

<table>
<thead>
<tr>
<th>Geometric Corrections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Positional Accuracy</td>
<td>20 m 2 \sigma without GCPs; 12.5 m 2 \sigma with GCPs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiometric Corrections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Signal Correction</td>
<td></td>
</tr>
<tr>
<td>Pixel Response non-uniformity correction</td>
<td></td>
</tr>
<tr>
<td>Crosstalk correction</td>
<td></td>
</tr>
<tr>
<td>Defective pixels identification</td>
<td></td>
</tr>
<tr>
<td>High Spatial resolution bands restoration (deconvolution and de-noising)</td>
<td></td>
</tr>
<tr>
<td>Binning of the 60 m spectral bands</td>
<td></td>
</tr>
<tr>
<td>TOA reflectance calculation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MetaData/Data Structure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Level-1C_Tile_Metadata_File (Tile Metadata): XML main metadata file (DIMAP mandatory file) containing the requested level of information and referring all the product elements describing the tile.</td>
<td></td>
</tr>
<tr>
<td>IMG_DATA: folder containing image data files compressed using the JPEG2000 algorithm, one file per band.</td>
<td></td>
</tr>
<tr>
<td>QI_DATA: folder containing QLQC XML reports of quality checks, mask files and PVI files.</td>
<td></td>
</tr>
<tr>
<td>Inventory_Metadata.xml: inventory metadata file (mandatory).</td>
<td></td>
</tr>
<tr>
<td>manifest.safe: XML SAFE manifest file (Mandatory)</td>
<td></td>
</tr>
<tr>
<td>rep-info: folder containing the XSD schema provided inside a SAFE Level-0 granule</td>
<td></td>
</tr>
</tbody>
</table>
6. PRODUCT PROCESSING

6.1 PlanetScope Processing

Several processing steps are applied to PlanetScope imagery products, listed in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darkfield/Offset Correction</td>
<td>Corrects for sensor bias and dark noise. Master offset tables are created by averaging on-orbit darkfield collects across 5-10 degree temperature bins and applied to scenes during processing based on the CCD temperature at acquisition time.</td>
</tr>
<tr>
<td>Flat Field Correction</td>
<td>Flat fields are collected for each optical instrument prior to launch. These fields are used to correct image lighting and CCD element effects to match the optimal response area of the sensor.</td>
</tr>
<tr>
<td>Camera Acquisition Parameter Correction</td>
<td>Determines a common radiometric response for each image (regardless of exposure time, TDI, gain, camera temperature and other camera parameters).</td>
</tr>
<tr>
<td>Absolute Calibration</td>
<td>As a last step, the spatially and temporally adjusted datasets are transformed from digital number values into physical based radiance values (scaled to W/(m²strμm)*100).</td>
</tr>
</tbody>
</table>
| Visual Product Processing | Presents the imagery as natural color, optimize colors as seen by the human eye. This process is broken down into 4 steps:
 • Flat fielding applied to correct for vignetting.
 • Nominalization - Sun angle correction, to account for differences in latitude and time of acquisition. This makes the imagery appear to look like it was acquired at the same sun angle by converting the exposure time to the nominal time (noon).
 • Unsharp mask (sharpening filter) applied before the warp process.
 • Custom color curve applied post warping. |
| Orthorectification | Removes terrain distortions. This process is broken down into 2 steps:
 • The rectification tiedown process wherein tie points are identified across the source images and a collection of reference images (NAIP, OSM, Landsat, and high resolution image chips) and RPCs are generated.
 • The actual orthorectification of the scenes using the RPCs, to remove terrain distortions. The terrain model used for the orthorectification process is derived from multiple sources (SRTM, Intermap, and other local elevation datasets) which are periodically updated. Snapshots of the elevation datasets used are archived (helps in identifying the DEM that was used for any given scene at any given point). |
The figure below illustrates the processing chain and steps involved to generate each of PlanetScope’s imagery products.

Figure F: PlanetScope Image Processing Chain
6.2 RapidEye Processing

For RapidEye imagery products, the processing steps are listed in the table below.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Field Correction (also referred to as spatial calibration)</td>
<td>Correction parameters to achieve the common response of all CCD element when exposed to the same amount of light have been collected for each optical instrument prior to launch. During operations, these corrections are adjusted on an as-needed basis when effects become visible or measurable using side slither or statistical methods. This step additionally involves statistical adjustments of the read-out channel gains and offsets on a per image basis.</td>
</tr>
<tr>
<td>Temporal Calibration</td>
<td>Corrections are applied so that all RapidEye cameras read the same DN (digital number) regardless of when the image has been taken in the mission lifetime. Additionally with this step a cross calibration between all spacecraft is achieved.</td>
</tr>
<tr>
<td>Absolute Calibration</td>
<td>As a last step the spatially and temporally adjusted datasets are transformed from digital number values into physical based radiance values (scaled to W/(m²str μm)*100).</td>
</tr>
<tr>
<td>Visual Product Processing</td>
<td>Presents the imagery as natural color, optimize colors as seen by the human eye. This process is broken down into 3 steps:</td>
</tr>
<tr>
<td></td>
<td>• Nominalization - Sun angle correction, to account for differences in latitude and time of acquisition. This makes the imagery appear to look like it was acquired at the same sun angle by converting the exposure time to the nominal time (noon).</td>
</tr>
<tr>
<td></td>
<td>• Unsharp mask (sharpening filter) applied before the warp process.</td>
</tr>
<tr>
<td></td>
<td>• Custom color curve applied post warping.</td>
</tr>
<tr>
<td>Orthorectification</td>
<td>Removes terrain distortions. This process is broken down into 2 steps:</td>
</tr>
<tr>
<td></td>
<td>• The rectification tiedown process wherein tie points are identified across the source images and a collection of reference images (NAIP, OSM, Landsat, and high resolution image chips) and RPCs are generated.</td>
</tr>
<tr>
<td></td>
<td>• The actual orthorectification of the scenes using the RPCs, to remove terrain distortions. The terrain model used for the orthorectification process is derived from multiple sources (SRTM, Intermap, and other local elevation datasets) which are periodically updated. Snapshots of the elevation datasets used are archived (helps in identifying the DEM that was used for any given scene at any given point).</td>
</tr>
</tbody>
</table>
The figure below illustrates the processing chain and steps involved to generate each of RapidEye’s imagery products.

Figure G: RapidEye Image Processing Chain

- **RAW DATA**
 - GCP PRE-MARKING & GEO-LOCATIONAL REFINEMENT
 - CLOUD ASSESSMENT
- **SENSOR & RADIOMETRIC CALIBRATION**
- **BAND CO-REGISTRATION**
- **ORTHORECTIFICATION** (REMOVE TERRAIN DISTORTIONS)
- **STRIP OUT NIR & RE**
- **Radiometric Improvements:**
 - Color Curve Applied
- **Projections**
 - WGS84
 - UTM

- **BASIC SCENE PRODUCT**
 - Imagery
- **GCPs**
- **Improved RPCs**
- **Radiometric Improvements:**
 - Color Curve Applied
- **VISUAL ORTHO TILE PRODUCT**
- **ANALYTIC ORTHO TILE PRODUCT**
7. QUALITY ATTRIBUTES

7.1 Product Geometric Positional Accuracy

The locational accuracy of all the imagery products depends on the quality of the reference data used: Ground Control Points (GCPs) and Digital Elevation Model (DEMs). Additionally, the roll angle of the spacecraft during the image acquisition and the number as well as the distribution of GCPs within the image will impact the final product accuracy.

Planet utilizes a unique imagery rectification approach that minimizes processing steps to increase overall processing efficiency in preparation for the large amounts of imagery data that will be downloaded and rectified at Full Operational Capability (FOC). This approach reduces resampling steps through a proprietary parallel processing approach that enables moving from raw to orthorectified imagery without degradation of imagery quality.

To ensure the high accuracy of all of our ortho products on a global basis, Planet uses over 500,000 Ground Control Points, which have been derived from high resolution satellite and airborne imagery. The vertical component is derived from Digital Elevation Models with a post spacing under 30 m globally. Planet products produced using GCPs and the World30 DEM will have a locational accuracy of 10 m RMSE or better. Internal testing conducted on multiple locations worldwide indicates that locational accuracy will typically (80% of the times) be better than 7 m RMSE.

7.2 Cloud Cover

7.2.1 PlanetScope

The cloud estimation for PlanetScope is based off of the expected radiance of pixels for a given time of year. A historical per-pixel database has been built from the Landsat 8 archive. If the radiance of a PlanetScope pixel is significantly higher than expected for that time of year, the pixel is marked as ‘cloudy’.

This method is fast and simple, but has limitations:

1. If a region may be covered by snow at a given time of year, clouds are much less likely to be identified.
2. Darker clouds are less likely to be identified. This includes both thin clouds and self-shadowed clouds.
3. Brighter areas, such as desert surfaces, sands, and salt flats, are less likely to be identified as containing clouds.
4. Specular reflection at noon local time are more likely to be marked as clouds.

7.2.2 RapidEye

Cloud cover assessment for RapidEye image products is done at the cataloging stage for each image using a semi-automated process.
This process automatically applies a regular grid pattern of 1 km by 1 km over a reduced resolution image at a 50 meter pixel size. The algorithm computes a confidence value for each pixel in the Image Take in order to determine whether the pixel is a cloud or non-cloud pixel by thresholding the radiance values of the pixels within the red band of the image. Each grid cell is then tested to determine if the minimum number of cloudy pixels are present in the cell for it to be marked automatically as cloudy. Currently, at least 10% of the pixels in a grid should be cloudy for a grid cell to be automatically classified as cloudy.

After the automatic cloud mask is generated the Image Take processing will stop for operator intervention. This allows the operator to visually inspect the cloud mask and edit it if necessary by either removing falsely classified grid cells or marking more grid cells as cloudy that were not identified and marked automatically as cloudy. When the operator is satisfied with the cloud mask, the Image Take is accepted and the cloud assessment process is complete.

The results from this process are used to create the Unusable Data Mask (UDM) file that accompanies every image product is used to determine whether each tile can be accepted or whether a new collection is required and the area re-tasked. This value is also used to report the cloud cover percentage value for the product in the Planet platform.

7.3 Band Co-Registration

7.3.1 PlanetScope

The RGB and the NIR “stripes” are 2 separate acquisitions (approximately 0.5 seconds apart). The imagery is first rectified to the ground and any adjacent rectified scenes with high accuracy. All tiepoints from this rectification solution (geographic and image coordinate tuples) are saved for future use. The Planet Pipeline is then able to quickly perform an operation similar to bundle adjustment over all scenes in a strip, optimizing for ground alignment and band co-registration. If one is familiar with the traditional bundle adjustment workflow, think of it as replacing the camera models with RPC equations, with the added benefit of ground tiepoints.

7.3.2 RapidEye

The focal plane of the RapidEye sensors is comprised of five separate CCD arrays, one for each band. This means that the bands have imaging time differences of up to three seconds for the same point on the ground, with the blue and red bands being furthest apart in time. During processing, every product is band co-registered using a DEM to roughly correlate the bands to the reference band (Red Edge); a final alignment is done using an auto-correlation approach between the bands. For areas where the slope is below 10°, the band co-registration should be within 0.2 pixels or less (1-sigma). For areas with a slope angle of more than 10° and/or areas with very limited image structure (e.g. sand dunes, water bodies, areas with significant snow cover) the co-registration threshold mentioned above may not be met.

The separation between the RapidEye spectral bands leads to some effects that can be seen in the imagery. In a regular RapidEye scene with clouds, the cloud may show a red-blue halo around the main cloud. This is due to the Red and Blue bands being furthest apart on the sensor array, and the cloud moving during
the imaging time between the two bands. Also, clouds are not reflected within the DEM which may lead to mis-registration. The same effect is visible for jet exhaust trails and flying planes. Bright vehicles moving on the ground will also look like colored streaks due to the image time differences.

7.4 Radiometry and Radiometric Accuracy

7.4.1 PlanetScope

Significant effort is made to ensure radiometric image product quality of all PlanetScope Satellite Imagery Products. This is achieved through a vigorous sensor calibration concept that is based on lab calibration, regular checks of the statistics from all incoming image data, acquisitions over selected temporal calibration sites, and absolute ground calibration campaigns.

The current product release will include calibrated radiance values using a limited set of pre-launch calibration data in the Analytic Ortho Tiles. This preview release is intended to expose users to the format of the radiance product. Our objective is to keep the calibration accuracy of the PlanetScope constellation consistent over time with on-orbit calibration techniques.

7.4.2 RapidEye

Significant effort is made to ensure radiometric image product quality of all RapidEye Satellite Imagery Products. This is achieved through a vigorous sensor calibration concept that is based on regular checks of the statistics from all incoming image data, acquisitions over selected temporal calibration sites, and absolute ground calibration campaigns.

The long term stability and inter-comparability among all five satellites is done by monitoring all incoming image data, along with frequent acquisitions from a number of calibration sites located worldwide. Statistics from all collects are used to update the gain and offset tables for each satellite. These statistics are also used to ensure that each band is within a range of +/- 2.5% from the band mean value across the constellation and over the satellite's lifetime.

All RapidEye satellite images are collected at a bit depth of 12 bits and stored on-board the satellites with a bit depth of up to 12 bits. The bit depth of the original raw imagery can be determined from the "shifting" field in the XML metadata file. During on-ground processing, radiometric corrections are applied and all images are scaled to a 16-bit dynamic range. This scaling converts the (relative) pixel DNs coming directly from the sensor into values directly related to absolute at sensor radiances. The scaling factor is applied so that the resultant single DN values correspond to 1/100th of a W/(m²*sr*μm). The DNs of the RapidEye image pixels represent the absolute calibrated radiance values for the image.

Results from an on-orbit absolute calibration campaign have been used to update the pre-launch absolute calibration of all five sensors. This calibration change applies to all imagery acquired after 1 January, 2010, but was only effective on or after 27 April, 2010.

The radiometric sensitivity for each band is defined in absolute values for standard conditions (21 March, 45° North, Standard Atmosphere) in terms of a minimum detectable reflectance difference. This deter-
mines the already mentioned bit depth as well as the tolerable radiometric noise within the images. It is more restrictive for the Red, Red Edge, and NIR bands, compared with the Blue and Green bands. During image quality control, a continuous check of the radiometric noise level is performed.

Converting to Radiance and Top of Atmosphere Reflectance

To convert the pixel values of the Analytic products to radiance, it is necessary to multiply the DN value by the radiometric scale factor, as follows:

\[\text{RAD}(i) = \text{DN}(i) \times \text{radiometricScaleFactor}(i), \text{ where } \text{radiometricScaleFactor}(i) = 0.01 \]

The resulting value is the at sensor radiance of that pixel in watts per steradian per square meter (W/m²*sr*m).

Reflectance is generally the ratio of the reflected radiance divided by the incoming radiance. Note, that this ratio has a directional aspect. To turn radiances into a reflectance it is necessary to relate the radiance values (e.g. the pixel DNs) to the radiance the object is illuminated with. This is often done by applying an atmospheric correction software to the image, because this way the impact of the atmosphere to the radiance values is eliminated at the same time. But it would also be possible to neglect the influence of the atmosphere by calculating the Top Of Atmosphere (TOA) reflectance taking into consideration only the sun distance and the geometry of the incoming solar radiation. The formula to calculate the TOA reflectance not taking into account any atmospheric influence is as follows:

\[\text{REF}(i) = \frac{\pi \times \text{SunDist}^2}{\text{EAI}(i) \times \cos(\text{SolarZenith})} \]

With:
- \(i \) = Number of the spectral band
- \(\text{REF} \) = reflectance value
- \(\text{RAD} \) = Radiance value
- \(\text{SunDist} \) = Earth-Sun Distance at the day of acquisition in Astronomical Units. Note: This value is not fixed, it varies between 0.983 289 8912 AU and 1.016 710 3335 AU and has to be calculated for the image acquisition point in time.
- \(\text{EAI} \) = Exo-Atmospheric Irradiance
- \(\text{SolarZenith} \) = Solar Zenith angle in degrees (= 90° – sun elevation)

For RapidEye, the EAI values for the 5 bands are:
- Blue: 1997.8 W/m² m
- Green: 1863.5 W/m² m
- Red: 1560.4 W/m² m
- RE: 1395.0 W/m² m
- NIR: 1124.4 W/m² m

For PlanetScope, the EAI values will be published online.
8. PRODUCT METADATA

8.1 Ortho Tiles

8.1.1 PlanetScope

As mentioned in earlier sections, the Ortho Tile data in the Planet API will contain metadata in machine-readable GeoJSON and supported by standards-compliant GIS tools (e.g. GDAL and derivatives, JavaScript libraries). The product metadata is also provided in XML format (see APPENDIX A for info on general product XML metadata.)

The table below describes the GeoJSON metadata schema for PlanetScope Ortho Tile products:

![Table T: PlanetScope Ortho Tile GeoJSON Metadata Schema](image)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>published</td>
<td>The RFC 3339 timestamp at which this item was added to the API.</td>
<td>string</td>
</tr>
<tr>
<td>quality_category</td>
<td>Metric for image quality. To qualify for “standard” image quality an image must meet the following criteria: sun altitude greater than or equal to 10 degrees, off nadir view angle less than 20 degrees, and saturated pixels fewer than 20%. If the image does not meet these criteria it is considered “test” quality.</td>
<td>String: “standard” or “test”</td>
</tr>
<tr>
<td>rows</td>
<td>Number of rows in the image.</td>
<td>number</td>
</tr>
<tr>
<td>satellite_id</td>
<td>Globally unique identifier of the satellite that acquired the underlying imagery.</td>
<td>string</td>
</tr>
<tr>
<td>sun_azimuth</td>
<td>Angle from true north to the sun vector projected on the horizontal plane in degrees.</td>
<td>number (0 - 360)</td>
</tr>
<tr>
<td>sun_elevation</td>
<td>Elevation angle of the sun in degrees.</td>
<td>number (0 - 90)</td>
</tr>
<tr>
<td>updated</td>
<td>The RFC 3339 timestamp at which this item was updated in the API.</td>
<td>string</td>
</tr>
<tr>
<td>usable_data</td>
<td>Ratio of the usable to unusable portion of the imagery due to cloud cover or black fill</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>view_angle</td>
<td>Spacecraft across-track off-nadir viewing angle used for imaging, in degrees with + being east and - being west.</td>
<td>number (-25 - +25)</td>
</tr>
</tbody>
</table>

8.1.2 RapidEye

The table below describes the GeoJSON metadata schema for RapidEye Ortho Tile products:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquired</td>
<td>The RFC 3339 acquisition time of underlying imagery.</td>
<td>string</td>
</tr>
<tr>
<td>anomalous_pixel</td>
<td>Percentage of anomalous pixels. Pixels that have image quality issues documented in the quality taxonomy (e.g. hot columns). This is represented spatially within the UDM.</td>
<td>number</td>
</tr>
<tr>
<td>black_fill</td>
<td>Ratio of image containing artificial black fill due to clipping to actual data.</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>cloud_cover</td>
<td>Ratio of the area covered by clouds to that which is uncovered.</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>columns</td>
<td>Number of columns in the image.</td>
<td>number</td>
</tr>
<tr>
<td>epsg_code</td>
<td>The identifier for the grid cell that the imagery product is coming from if the product is an Ortho Tile (not used if Scene).</td>
<td>number</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
<td>Type</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>grid_cell</td>
<td>The grid cell identifier of the gridded item.</td>
<td>string</td>
</tr>
<tr>
<td>ground_control</td>
<td>If the image meets the positional accuracy specifications this value will be true. If the image has uncertain positional accuracy, this value will be false.</td>
<td>boolean</td>
</tr>
<tr>
<td>gsd</td>
<td>The ground sampling distance of the image acquisition.</td>
<td>number</td>
</tr>
<tr>
<td>item_type</td>
<td></td>
<td>string</td>
</tr>
<tr>
<td></td>
<td>ground_control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the image meets the positional accuracy specifications this value will be true. If the image has uncertain positional accuracy, this value will be false.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gsd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The ground sampling distance of the image acquisition.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>item_type</td>
<td></td>
</tr>
<tr>
<td></td>
<td>string (PSOrthoTile)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>origin_x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ULX coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>origin_y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ULY coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pixel_resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pixel resolution of the imagery in meters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>provider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name of the imagery provider.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>published</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The RFC 3339 timestamp at which this item was added to the API.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rows</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of rows in the image.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>satellite_id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Globally unique identifier of the satellite that acquired the underlying imagery.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sun_azimuth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angle from true north to the sun vector projected on the horizontal plane in degrees.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sun_elevation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevation angle of the sun in degrees.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>updated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The RFC 3339 timestamp at which this item was updated in the API.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>usable_data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ratio of the usable to unusable portion of the imagery due to cloud cover or black fill</td>
<td></td>
</tr>
<tr>
<td></td>
<td>view_angle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spacecraft across-track off-nadir viewing angle used for imaging, in degrees with + being east and - being west.</td>
<td></td>
</tr>
</tbody>
</table>

8.2 Ortho Scenes

8.2.1 PlanetScope

The table below describe the GeoJSON metadata schema for PlanetScope Ortho Scene products.

Table V: PlanetScope Ortho Scene GeoJSON Metadata Schema
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquired</td>
<td>The RFC 3339 acquisition time of the image.</td>
<td>string</td>
</tr>
<tr>
<td>anomalous_pixel</td>
<td>percentage of anomalous pixels. Pixels that have image quality issues documented in the quality taxonomy (e.g. hot columns). This is represented spatially within the UDM.</td>
<td>number</td>
</tr>
<tr>
<td>cloud_cover</td>
<td>Ratio of the area covered by clouds to that which is uncovered.</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>columns</td>
<td>Number of columns in the image.</td>
<td>number</td>
</tr>
<tr>
<td>ground_control</td>
<td>If the image meets the positional accuracy specifications this value will be true. If the image has uncertain positional accuracy, this value will be false.</td>
<td>boolean</td>
</tr>
<tr>
<td>gsd</td>
<td>The ground sampling distance of the image acquisition.</td>
<td>number</td>
</tr>
<tr>
<td>item_type</td>
<td>The name of the item type that models shared imagery data schema.</td>
<td>string (e.g. “PSScene3Band”, “PSScene4Band”)</td>
</tr>
<tr>
<td>instrument</td>
<td>The generation of the satellite telescope.</td>
<td>string (e.g. “PS0”, “PS1”, “PS2”)</td>
</tr>
<tr>
<td>origin_x</td>
<td>ULX coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel.</td>
<td>number</td>
</tr>
<tr>
<td>origin_y</td>
<td>ULY coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel.</td>
<td>number</td>
</tr>
<tr>
<td>pixel_resolution</td>
<td>Pixel resolution of the imagery in meters.</td>
<td>number</td>
</tr>
<tr>
<td>provider</td>
<td>Name of the imagery provider.</td>
<td>string (”planetscope”,”rapideye””)</td>
</tr>
<tr>
<td>published</td>
<td>The RFC 3339 timestamp at which this item was added to the API.</td>
<td>string</td>
</tr>
<tr>
<td>quality_category</td>
<td>Metric for image quality. To qualify for “standard” image quality an image must meet the following criteria: sun altitude greater than or equal to 10 degrees, off nadir view angle less than 20 degrees, and saturated pixels fewer than 20%. If the image does not meet these criteria it is considered “test” quality.</td>
<td>string (“standard”, “test”)</td>
</tr>
<tr>
<td>rows</td>
<td>Number of rows in the image</td>
<td>number</td>
</tr>
<tr>
<td>satellite_id</td>
<td>Globally unique identifier of the satellite that acquired the underlying imagery.</td>
<td>string</td>
</tr>
<tr>
<td>sun_azimuth</td>
<td>Angle from true north to the sun vector projected on the horizontal plane in degrees.</td>
<td>number (0 - 360)</td>
</tr>
<tr>
<td>sun_elevation</td>
<td>Elevation angle of the sun in degrees.</td>
<td>number (0 - 90)</td>
</tr>
<tr>
<td>updated</td>
<td>The RFC 3339 timestamp at which this item was updated in the API.</td>
<td>date</td>
</tr>
<tr>
<td>usable_data</td>
<td>Ratio of the usable to unusable portion of the imagery due to cloud cover or black fill.</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>view_angle</td>
<td>Spacecraft across-track off-nadir viewing angle used for imaging, in degrees with + being east and - being west.</td>
<td>number (-25 - +25)</td>
</tr>
</tbody>
</table>
8.3 Basic Scenes

8.3.1 PlanetScope

The following describes the GeoJSON metadata schema for PlanetScope Basic Scene products:

Table W: PlanetScope Basic Scene GeoJSON Metadata Schema

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquired</td>
<td>The RFC 3339 acquisition time of underlying imagery.</td>
<td>string</td>
</tr>
<tr>
<td>anomalous_pixel</td>
<td>percentage of anomalous pixels. Pixels that have image quality issues documented in the quality taxonomy (e.g. hot columns). This is represented spatially within the UDM.</td>
<td>number</td>
</tr>
<tr>
<td>cloud_cover</td>
<td>Ratio of the area covered by clouds to that which is uncovered.</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>columns</td>
<td>Number of columns in the image</td>
<td>number</td>
</tr>
<tr>
<td>epsg_code</td>
<td>The identifier for the grid cell that the imagery product is coming from if the product is an imagery tile (not used if scene).</td>
<td>number</td>
</tr>
<tr>
<td>ground_control</td>
<td>If the image meets the positional accuracy specifications this value will be true. If the image has uncertain positional accuracy, this value will be false.</td>
<td>boolean</td>
</tr>
<tr>
<td>gsd</td>
<td>The ground sampling distance of the image acquisition</td>
<td>number</td>
</tr>
<tr>
<td>instrument</td>
<td>The generation of the satellite telescope.</td>
<td>string (e.g. “PS0”, “PS1”, “PS2”)</td>
</tr>
<tr>
<td>item_type</td>
<td>The name of the item type that models shared imagery data schema.</td>
<td>string (e.g. “PSScene-3Band”, “PSScene4Band”)</td>
</tr>
<tr>
<td>origin_x</td>
<td>ULX coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel.</td>
<td>number</td>
</tr>
<tr>
<td>origin_y</td>
<td>ULY coordinate of the extent of the data. The coordinate references the top left corner of the top left pixel.</td>
<td>number</td>
</tr>
<tr>
<td>provider</td>
<td>Name of the imagery provider.</td>
<td>string</td>
</tr>
<tr>
<td>published</td>
<td>The RFC 3339 timestamp at which this item was added to the API.</td>
<td>string</td>
</tr>
<tr>
<td>quality_category</td>
<td>Metric for image quality. To qualify for “standard” image quality an image must meet the following criteria: sun altitude greater than or equal to 10 degrees, off nadir view angle less than 20 degrees, and saturated pixels fewer than 20%. If the image does not meet these criteria it is considered “test” quality.</td>
<td>string ("standard", “test”)</td>
</tr>
<tr>
<td>rows</td>
<td>Number of rows in the image.</td>
<td>number</td>
</tr>
<tr>
<td>satellite_id</td>
<td>Globally unique identifier of the satellite that acquired the underlying imagery.</td>
<td>string</td>
</tr>
<tr>
<td>sun_azimuth</td>
<td>Angle from true north to the sun vector projected on the horizontal plane in degrees.</td>
<td>number (0 - 360)</td>
</tr>
<tr>
<td>sun_elevation</td>
<td>Elevation angle of the sun in degrees.</td>
<td>number (0 - 90)</td>
</tr>
<tr>
<td>usable_data</td>
<td>Ratio of the usable to unusable portion of the imagery due to cloud cover or black fill</td>
<td>number (0 - 1)</td>
</tr>
<tr>
<td>view_angle</td>
<td>Spacecraft across-track off-nadir viewing angle used for imaging, in degrees with + being east and - being west.</td>
<td>number (-25 - +25)</td>
</tr>
</tbody>
</table>
8.3.2 RapidEye

The table below describes the GeoJSON metadata schema for RapidEye Basic Scene products:

Table X: RapidEye Basic Scene GeoJSON Metadata Schema

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquired</td>
<td>The time that image was taken in ISO 8601 format, in UTC.</td>
<td>string</td>
</tr>
<tr>
<td>area</td>
<td>Area covered by the image (excluding black_fill) in square kilometers.</td>
<td>number</td>
</tr>
<tr>
<td>cloud_cover.estimated</td>
<td>The estimated percentage of the image covered by clouds.</td>
<td>number (0-100)</td>
</tr>
<tr>
<td>image_statistics.gsd</td>
<td>The ground sample distance (distance between pixel centers measured on the ground) of the image in meters.</td>
<td>number</td>
</tr>
<tr>
<td>rapideye.black_fill</td>
<td>The percent of image pixels without valid image data.</td>
<td>number (0-100)</td>
</tr>
<tr>
<td>rapideye.catalog_id</td>
<td>The base RapidEye Level 3A catalog id.</td>
<td>string</td>
</tr>
<tr>
<td>rapideye.tile_id</td>
<td>The RapidEye tile id - corresponds to a fixed footprint.</td>
<td>string</td>
</tr>
<tr>
<td>sat.alt</td>
<td>The altitude of the satellite when the image was taken in kilometers.</td>
<td>number</td>
</tr>
<tr>
<td>sat.id</td>
<td>A unique identifier for the satellite that captured this image.</td>
<td>string</td>
</tr>
<tr>
<td>sat.off_nadir</td>
<td>The angle off nadir in degrees at which the image was taken. (absolute view angle).</td>
<td>number</td>
</tr>
<tr>
<td>sat.view_angle</td>
<td>The view angle in degrees at which the image was taken.</td>
<td>number</td>
</tr>
<tr>
<td>strip_id</td>
<td>The base RapidEye Level 1B catalog id.</td>
<td>string</td>
</tr>
<tr>
<td>sun.azimuth_angle</td>
<td>The azimuth of the satellite from the imaged location at the time of capture in degrees.</td>
<td>number</td>
</tr>
<tr>
<td>sun.altitude</td>
<td>The altitude (angle above horizon) of the sun from the imaged location at the time of capture in degrees.</td>
<td>number</td>
</tr>
<tr>
<td>sun.azimuth</td>
<td>The azimuth (angle clockwise from north) of the sun from the imaged location at the time of capture in degrees.</td>
<td>number</td>
</tr>
</tbody>
</table>
9. PRODUCT DELIVERY

All imagery products are made available via Application Processing Interface (API) and Graphical User Interface (GUI).

9.1 Planet Application Programming Interface (API)

The Planet API offers REST API access that allows listing, filtering, and downloading of data to anyone using a valid API key. The metadata features described later in this document are all available in the responses to API queries. The full TIFF / GeoTIFF image data files are accessible (in the different product formats) at the /full URL endpoints.

Metadata associate with imagery products can be requested through the API endpoint: api.planet.com/data/v1/

The table below shows a list of all the item types in the Data API:

Table Y: Planet Data API - Item Types

<table>
<thead>
<tr>
<th>Item Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSScene3Band</td>
<td>PlanetScope 3-band Basic and Ortho Scenes. Scenes are framed as captured.</td>
</tr>
<tr>
<td></td>
<td>• Analytic imagery band order: Band 1 = Red, Band 2 = Green, Band 3 = Blue</td>
</tr>
<tr>
<td></td>
<td>• Visual imagery band order: Band 1 = Red, Band 2 = Green, Band 3 = Blue</td>
</tr>
<tr>
<td>PSScene4Band</td>
<td>PlanetScope 4-band Basic and Ortho Scenes. Scenes are framed as captured.</td>
</tr>
<tr>
<td></td>
<td>• Analytic imagery band order: Band 1 = Blue, Band 2 = Green, Band 3 = Red, Band 4 = Near-infrared</td>
</tr>
<tr>
<td>PSOrthoTile</td>
<td>PlanetScope 4-band Ortho Tiles as 25 km x 25 km UTM tiles.</td>
</tr>
<tr>
<td></td>
<td>• Analytic imagery band order: Band 1 = Blue, Band 2 = Green, Band 3 = Red, Band 4 = Near-infrared</td>
</tr>
<tr>
<td></td>
<td>• Visual imagery Band order: Band 1 = Red, Band 2 = Green, Band 3 = Blue</td>
</tr>
<tr>
<td>REScene</td>
<td>RapidEye 5-band Basic, scene-/strip- based framing.</td>
</tr>
<tr>
<td></td>
<td>• Analytic imagery band order: Band 1 = Blue, Band 2 = Green, Band 3 = Red, Band 4 = Red edge, Band 5 = Near-infrared</td>
</tr>
<tr>
<td>REOrthoTile</td>
<td>RapidEye 5-band Ortho Tiles as 25 km x 25 km UTM tiles.</td>
</tr>
<tr>
<td></td>
<td>• Analytic imagery band order: Band 1 = Blue, Band 2 = Green, Band 3 = Red, Band 4 = Red edge, Band 5 = Near-infrared</td>
</tr>
<tr>
<td></td>
<td>• Visual imagery band order: Band 1 = Red, Band 2 = Green, Band 3 = Blue</td>
</tr>
<tr>
<td>Sentinel2L1C</td>
<td>Sentinel-2 L1C data packed zip file</td>
</tr>
<tr>
<td>Landsat8L1G</td>
<td>Landsat 8 data packed zip file</td>
</tr>
</tbody>
</table>

The table below shows a list of all the asset types in the Data API:

Table Z: Planet Data API - Asset Types

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>browse</td>
<td>Visual browse image for the Basic Scene product.</td>
</tr>
<tr>
<td>udm</td>
<td>Usable Data Mask.</td>
</tr>
<tr>
<td>Asset Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>visual</td>
<td>Visual product.</td>
</tr>
<tr>
<td>visual_xml</td>
<td>Visual product metadata in XML format.</td>
</tr>
<tr>
<td>analytic</td>
<td>Radiometrically-calibrated imagery suitable for analytic applications.</td>
</tr>
<tr>
<td>analytic_dn</td>
<td>Non-radiometrically calibrated imagery suitable for analytic applications.</td>
</tr>
<tr>
<td>analytic_xml</td>
<td>Analytic product metadata in XML format.</td>
</tr>
<tr>
<td>analytic_dn_xml</td>
<td>PlanetScope 3-band (RGB) Analytic Ortho Scene metadata in an XML format.</td>
</tr>
<tr>
<td>basic_analytic</td>
<td>PlanetScope 3-band (RGB) or 4-band (BGRN) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_sci</td>
<td>RapidEye spacecraft information metadata in XML format.</td>
</tr>
<tr>
<td>basic_analytic_dn</td>
<td>PlanetScope 3-band (RGB) 4-band (BGRN) Analytic DN Basic Sensor corrected - band or 4-band Basic Scene product, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_xml</td>
<td>XML metadata for the Basic Analytic Product.</td>
</tr>
<tr>
<td>basic_analytic_dn_xml</td>
<td>PlanetScope 3-band (RGB) or 4-band (BGRN) Analytic DN Basic Scene metadata XML metadata.</td>
</tr>
<tr>
<td>basic_analytic_nitf</td>
<td>PlanetScope 4-band (BGRN) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product stored in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_rpc</td>
<td>Rational Polynomial Coefficients text file used to orthorectify the Basic Scene.</td>
</tr>
<tr>
<td>basic_analytic_rpc_nitf</td>
<td>Rational Polynomial Coefficients text file used to orthorectify the PlanetScope 4-band (BGRN) Analytic NITF Basic scene.</td>
</tr>
<tr>
<td>basic_analytic_dn_rpc</td>
<td>Rational Polynomial Coefficients text file used to orthorectify the PlanetScope 3-band (RGB) or 4-band (BGRN) Analytic DN Basic Scene.</td>
</tr>
<tr>
<td>basic_analytic_xml_nitf</td>
<td>XML metadata for the NITF Basic Scene.</td>
</tr>
<tr>
<td>basic_analytic_dn_nitf</td>
<td>PlanetScope 4-band (BGRN) Sensor corrected Basic Scene product stored in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing, stored in an NITF format, and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_dn_xml_nitf</td>
<td>XML metadata for the PlanetScope 4-band (BGRN) Analytic DN NITF Basic Scene.</td>
</tr>
<tr>
<td>basic_analytic_dn_rpc_nitf</td>
<td>Rational Polynomial Coefficients text file used to orthorectify the PlanetScope 4-band (BGRN) Analytic DN NITF Basic scene.</td>
</tr>
<tr>
<td>basic_analytic_b1</td>
<td>RapidEye Band 1 (Blue) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b2</td>
<td>RapidEye Band 2 (Green) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b3</td>
<td>RapidEye Band 3 (Red) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>Asset Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>basic_analytic_b4</td>
<td>RapidEye Band 4 (Red Edge) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b5</td>
<td>RapidEye Band 5 (Near-infrared) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b1_nitf</td>
<td>RapidEye Band 1 (Blue) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b2_nitf</td>
<td>RapidEye Band 2 (Green) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b3_nitf</td>
<td>RapidEye Band 3 (Red) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b4_nitf</td>
<td>RapidEye Band 4 (Red Edge) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_analytic_b5_nitf</td>
<td>RapidEye Band 5 (Blue) scaled Top of Atmosphere Radiance (at sensor) and Sensor corrected, Basic Scene product in the NITF format, designed for users with advanced image processing and geometric correction capabilities. Scene based framing and not projected to a cartographic projection.</td>
</tr>
<tr>
<td>basic_udm</td>
<td>Unusable Data Mask: Unusable data bit mask in GeoTIFF format for the Basic Scene product.</td>
</tr>
<tr>
<td>analytic_b*</td>
<td>Analytic bands for Landsat 8 or Sentinel-2, where “*” represents the band #.</td>
</tr>
<tr>
<td></td>
<td>For Landsat, “” can range from 1 to 11. For Sentinel, “” can range from 1 to 12, but also may be “8a”</td>
</tr>
<tr>
<td></td>
<td>E.g analytic_b1, analytic_b2, analytic_b3, and so on</td>
</tr>
<tr>
<td>analytic_bqa</td>
<td>Landsat 8 quality assessment band</td>
</tr>
<tr>
<td>visual</td>
<td>Landsat 8 B4,B3,B2 band combined to create the RGB product</td>
</tr>
<tr>
<td>metadata_txt</td>
<td>Landsat 8 metadata text file</td>
</tr>
<tr>
<td>metadata_aux</td>
<td>Sentinel-2 metadata text file</td>
</tr>
</tbody>
</table>

9.2 Planet Graphical User Interface (GUI)

The Planet Explorer Beta is a set of web-based GUI tools that can be used to search Planet’s catalog of imagery, view metadata, and download full-resolution images. The interface and all of its features are built entirely on the externally available Planet API.

The link to the Planet Explorer Beta is: www.planet.com/explorer

Planet’s GUI allows users to:
1. **View Timelapse Mosaics:** A user can view Planet’s quarterly and monthly mosaics for all of 2016, and can zoom in up to zoom level 12 (38 m / pixel per OpenStreetMap)

2. **Search:** A user can search for any location or a specific area of interest by entering into the input box OR by uploading a geometry file (Shapefile, GeoJSON, KML, or WKT).

3. **Save Search:** The Save functionality allows a user to save search criteria based on area of interest, dates, and filters.

4. **Filter:** A user can filter by a specific date range and/or customizing metadata parameters (e.g. estimated cloud cover, GSD).

5. **Zoom and Preview Imagery:** Zoom and Preview allows a user to zoom in or out of the selected area and preview imagery.

6. **View Imagery Details:** A user can review metadata details about each imagery product.

7. **Download:** The Download icon allows a user to download imagery based on subscription type.

8. **Draw Tools:** These tools allow you to specify an area to see imagery results. The draw tool capabilities available are drawing a circle, drawing a rectangle, drawing a polygon, and/or limiting the size of the drawing to the size of loadable imagery.

9. **Imagery Compare Tool:** The Compare Tool allows you to compare sets of Planet imagery from different dates.

Planet will also enable additional functionality in the form of “Labs,” which are demonstrations of capability made accessible to users through the GUI. Labs are active product features and will evolve over time based on Planet technology evolution and user feedback.

9.3 Planet Account Management Tools

As part of the Planet GUI, an administration and account management tool is provided. This tool is used to change user settings and to see past data orders. In addition, users who have administrator privileges will be able to manage users in their organization as well as review usage statistics.

The core functionality provided by account management tools are outlined below, and Planet may evolve Account Management tools over time to meet user needs:

1. **User Accounts Overview:** Every user account on the Planet Platform is uniquely identified by an email address. Each user also has a unique API key that can be used when interacting programmatically with the Platform.

2. **Organization and Sub-organization Overview:** Every user on the Planet Platform belongs to one organization. The Platform also supports “sub-organizations,” which are organizations that are attached to a “parent” organization. An administrator of a parent organization is also considered an administrator on all sub-organizations.

3. **Account Privileges:** Every user account on the Planet Platform has one of two roles: user or administrator. An administrator has elevated access and can perform certain user management operations or download usage metrics that are not available to standard users. An administrator of a parent organization is also considered an administrator on all sub-organizations. Administrators can enable or disable administrator status and enable or disable users’ access to the platform altogether.

4. **Orders and Usage Review:** This tool records all part orders made and allows users and administrators to view
and download past orders. Usage metrics are also made available, including imagery products downloaded and bandwidth usage. Usage metrics are displayed for each individual API key that is part of the organization.

9.4 File Format

The Basic Scene products are available as NITF and GeoTIFFs; the Visual and Analytic Ortho Tile products are GeoTIFFs.

The Ortho Tile product GeoTIFFs are resampled at 3.125 m, and projected in the UTM projection using the WGS84 datum. An alpha mask is provided as a binary color channel. The alpha mask can be used to remove or hide low-image-quality pixels near the periphery of a given scene. The alpha mask compensates for effects due to vignetting, low SNR, or hot or cold pixels.

The Ortho Scene product GeoTIFFs are resampled at 3 m, and projected in the UTM projection using the WGS84 datum. An alpha mask is provided as a binary color channel. The alpha mask can be used to remove or hide low-image-quality pixels near the periphery of a given scene. The alpha mask compensates for effects due to vignetting, low SNR, or hot or cold pixels.

Landsat 8 and Sentinel-2 data are passed through in the original provider’s format. In the case of Landsat 8 the format is geotiff. In the case of Sentinel-2, the format is jpeg2000.

9.5 Bulk Delivery Folder Structure

Sets of imagery products can be ordered through the Planet API. The name of the parent folder is:

 planet_order_[id]

Bulk deliveries are delivered in a .zip folder file format. Each .zip file contains:

- A README file with information about the order.
- A subfolder for each scene requested named with the scene id.
- Each subfolder contains the TIFF or GeoTIFF requested and an associated metadata file.
- If basic data is requested, the subfolder will also contain an RPC text file.
All PlanetScope and RapidEye Ortho Tile Products are accompanied by a set of image support data (ISD) files. These ISD files provide important information regarding the image and are useful sources of ancillary data related to the image. The ISD files are:

A. General XML Metadata File
B. Unusable Data Mask File

Each file is described along with its contents and format in the following sections.

1. General XML Metadata File

All PlanetScope Ortho Tile Products will be accompanied by a single general XML metadata file. This file contains a description of basic elements of the image. The file is written in Geographic Markup Language (GML) version 3.1.1 and follows the application schema defined in the Open Geospatial Consortium (OGC) Best Practices document for Optical Earth Observation products version 0.9.3, see http://www.opengeospatial.org/standards/gml.

The contents of the metadata file will vary depending on the image product processing level. All metadata files will contain a series of metadata fields common to all imagery products regardless of the processing level. However, some fields within this group of metadata may only apply to certain product levels. In addition, certain blocks within the metadata file apply only to certain product types. These blocks are noted within the table.

The table below describes the fields present in the General XML Metadata file for all product levels.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EarthObservationMetaData</td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>Root file name of the image</td>
</tr>
<tr>
<td>status</td>
<td>Status type of image, if newly acquired or produced from a previously archived image</td>
</tr>
<tr>
<td>downlinkedTo</td>
<td></td>
</tr>
<tr>
<td>acquisitionStation</td>
<td>X-band downlink station that received image from satellite</td>
</tr>
<tr>
<td>acquisitionDate</td>
<td>Date and time image was acquired by satellite</td>
</tr>
<tr>
<td>archivedIn</td>
<td></td>
</tr>
<tr>
<td>archivingCenter</td>
<td>Location where image is archived</td>
</tr>
<tr>
<td>archivingDate</td>
<td>Date image was archived</td>
</tr>
<tr>
<td>archivingIdentifier</td>
<td>Catalog ID of image.</td>
</tr>
</tbody>
</table>
General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>processing</td>
<td></td>
</tr>
<tr>
<td>processorName</td>
<td>Name of ground processing system</td>
</tr>
<tr>
<td>processorVersion</td>
<td>Version of processor</td>
</tr>
<tr>
<td>nativeProductFormat</td>
<td>Native image format of the raw image data</td>
</tr>
<tr>
<td>license</td>
<td></td>
</tr>
<tr>
<td>licenseType</td>
<td>Name of selected license for the product</td>
</tr>
<tr>
<td>resourceLink</td>
<td>Hyperlink to the physical license file</td>
</tr>
<tr>
<td>versionIsd</td>
<td>Version of the ISD</td>
</tr>
<tr>
<td>orderId</td>
<td>Order ID of the product</td>
</tr>
<tr>
<td>tileId</td>
<td>Tile ID of the product corresponding to the Tile Grid</td>
</tr>
<tr>
<td>pixelFormat</td>
<td>Number of bits per pixel per band in the product image file.</td>
</tr>
</tbody>
</table>

“validTime” Block

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TimePeriod</td>
<td></td>
</tr>
<tr>
<td>beginPosition</td>
<td>Start date and time of acquisition for source image take used to create product, in UTC</td>
</tr>
<tr>
<td>endPosition</td>
<td>End date and time of acquisition for source image take used to create product, in UTC</td>
</tr>
</tbody>
</table>

“using” Block

EarthObservationEquipment

platform

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortName</td>
<td>Identifies the name of the satellite platform used to collect the image</td>
</tr>
<tr>
<td>serialIdentifier</td>
<td>ID of the satellite that acquired the data</td>
</tr>
<tr>
<td>orbitType</td>
<td>Orbit type of satellite platform</td>
</tr>
<tr>
<td>sensor</td>
<td></td>
</tr>
</tbody>
</table>

sensor

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sensorType</td>
<td>Type of sensor used to acquire the data.</td>
</tr>
<tr>
<td>resolution</td>
<td>Spatial resolution of the sensor used to acquire the image, units in meters</td>
</tr>
<tr>
<td>scanType</td>
<td>Type of scanning system used by the sensor</td>
</tr>
</tbody>
</table>
General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acquisitionParameters</td>
<td></td>
</tr>
<tr>
<td>orbitDirection</td>
<td>The direction the satellite was traveling in its orbit when the image was acquired</td>
</tr>
<tr>
<td>incidenceAngle</td>
<td>The angle between the view direction of the satellite and a line perpendicular to the image or tile center.</td>
</tr>
<tr>
<td>illumination</td>
<td></td>
</tr>
<tr>
<td>AzimuthAngle</td>
<td>Sun azimuth angle at center of product, in degrees from North (clockwise) at the time of the first image line</td>
</tr>
<tr>
<td>ElevationAngle</td>
<td>Sun elevation angle at center of product, in degrees</td>
</tr>
<tr>
<td>spacecraftViewAngle</td>
<td>The angle from true north at the image or tile center to the scan (line) direction at image center, in clockwise positive degrees.</td>
</tr>
<tr>
<td>acquisitionDateTime</td>
<td>Date and Time at which the data was imaged, in UTC. Note: the imaging times will be somewhat different for each spectral band. This field is not intended to provide accurate image time tagging and hence is simply the imaging time of some (unspecified) part of the image.</td>
</tr>
</tbody>
</table>

"target" Block

<table>
<thead>
<tr>
<th>Footprint</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>multiExtentOf</td>
<td></td>
</tr>
<tr>
<td>posList</td>
<td>Position listing of the four corners of the image in geodetic coordinates in the format: ULX ULY URX URY LRX LRY LLX LLY ULX ULY where X = latitude and Y = longitude</td>
</tr>
<tr>
<td>geographicLocation</td>
<td></td>
</tr>
<tr>
<td>topLeft</td>
<td></td>
</tr>
<tr>
<td>latitude</td>
<td>Latitude of top left corner in geodetic WGS84 coordinates</td>
</tr>
<tr>
<td>longitude</td>
<td>Longitude of top left corner in geodetic WGS84 coordinates</td>
</tr>
<tr>
<td>topRight</td>
<td></td>
</tr>
<tr>
<td>latitude</td>
<td>Latitude of top right corner in geodetic WGS84 coordinates</td>
</tr>
<tr>
<td>longitude</td>
<td>Longitude of top right corner in geodetic WGS84 coordinates</td>
</tr>
<tr>
<td>bottomLeft</td>
<td></td>
</tr>
<tr>
<td>latitude</td>
<td>Latitude of bottom left corner in geodetic WGS84 coordinates</td>
</tr>
</tbody>
</table>
General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>longitude</td>
<td>Longitude of bottom left corner in geodetic WGS84 coordinates</td>
</tr>
</tbody>
</table>

General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bottomRight</td>
<td></td>
</tr>
<tr>
<td>latitude</td>
<td>Latitude of bottom right corner in geodetic WGS84 coordinates</td>
</tr>
<tr>
<td>longitude</td>
<td>Longitude of bottom right corner in geodetic WGS84 coordinates</td>
</tr>
</tbody>
</table>

"resultOf" Block

EarthObservationResult

browse

BrowseInformation

<table>
<thead>
<tr>
<th>type</th>
<th>Type of browse image that accompanies the image product as part of the ISD</th>
</tr>
</thead>
<tbody>
<tr>
<td>reference SystemIdentifier</td>
<td>Identifies the reference system used for the browse image</td>
</tr>
<tr>
<td>fileName</td>
<td>Name of the browse image file</td>
</tr>
<tr>
<td>product</td>
<td></td>
</tr>
<tr>
<td>fileName</td>
<td>Name of image file</td>
</tr>
<tr>
<td>size</td>
<td>The size of the image product in kbytes</td>
</tr>
<tr>
<td>productFormat</td>
<td>File format of the image product</td>
</tr>
</tbody>
</table>

spatialReferenceSystem

<table>
<thead>
<tr>
<th>epsgCode</th>
<th>EPSG code that corresponds to the datum and projection information of the image</th>
</tr>
</thead>
<tbody>
<tr>
<td>geodeticDatum</td>
<td>Name of datum used for the map projection of the image</td>
</tr>
<tr>
<td>projection</td>
<td>Projection system used for the image</td>
</tr>
<tr>
<td>projectionZone</td>
<td>Zone used for map projection</td>
</tr>
<tr>
<td>resamplingKernel</td>
<td>Resampling method used to produce the image. The list of possible algorithms is extendable.</td>
</tr>
<tr>
<td>numRows</td>
<td>Number of rows (lines) in the image</td>
</tr>
<tr>
<td>numColumns</td>
<td>Number of columns (pixels) per line in the image</td>
</tr>
<tr>
<td>numBands</td>
<td>Number of bands in the image product</td>
</tr>
<tr>
<td>rowGsd</td>
<td>The GSD of the rows (lines) within the image product</td>
</tr>
<tr>
<td>columnGsd</td>
<td>The GSD of the columns (pixels) within the image product</td>
</tr>
<tr>
<td>radiometric CorrectionApplied</td>
<td>Indicates whether radiometric correction has been applied to the image</td>
</tr>
</tbody>
</table>
geoCorrectionLevel
Level of correction applied to the image

atmosphericCorrectionApplied
Indicates whether atmospheric correction has been applied to the image

General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atmosphericCorrectionParameters</td>
<td></td>
</tr>
<tr>
<td>autoVisibility</td>
<td>Indicates whether the visibility was automatically calculated or defaulted</td>
</tr>
<tr>
<td>visibility</td>
<td>The visibility value used for atmospheric correction in km</td>
</tr>
<tr>
<td>aerosolType</td>
<td>The aerosol type used for atmospheric correction</td>
</tr>
<tr>
<td>waterVapor</td>
<td>The water vapor category used</td>
</tr>
<tr>
<td>hazeRemoval</td>
<td>Indicates whether haze removal was performed</td>
</tr>
<tr>
<td>roughTerrainCorrection</td>
<td>Indicates whether rough terrain correction was performed</td>
</tr>
<tr>
<td>bRDF</td>
<td>Indicates whether BRDF correction was performed</td>
</tr>
<tr>
<td>mask</td>
<td></td>
</tr>
<tr>
<td>MaskInformation</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Type of mask file accompanying the image as part of the ISD</td>
</tr>
<tr>
<td>format</td>
<td>Format of the mask file</td>
</tr>
<tr>
<td>referenceSystemIdentifier</td>
<td>EPSG code that corresponds to the datum and projection information of the mask file</td>
</tr>
<tr>
<td>fileName</td>
<td>File name of the mask file</td>
</tr>
<tr>
<td>cloudCoverPercentage</td>
<td>Estimate of cloud cover within the image</td>
</tr>
<tr>
<td>cloudCoverPercentageQuotationMode</td>
<td>Method of cloud cover determination</td>
</tr>
<tr>
<td>unusableDataPercentage</td>
<td>Percent of unusable data with the file</td>
</tr>
<tr>
<td>The following group is repeated for each spectral band included in the image product</td>
<td></td>
</tr>
<tr>
<td>bandSpecificMetadata</td>
<td></td>
</tr>
<tr>
<td>bandNumber</td>
<td>Number (1-5) by which the spectral band is identified.</td>
</tr>
<tr>
<td>startDateTime</td>
<td>Start time and date of band, in UTC</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>endDateTime</td>
<td>End time and date of band, in UTC</td>
</tr>
<tr>
<td>percentMissingLines</td>
<td>Percentage of missing lines in the source data of this band</td>
</tr>
<tr>
<td>percentSuspectLines</td>
<td>Percentage of suspect lines (lines that contained downlink errors) in the source data for the band</td>
</tr>
<tr>
<td>binning</td>
<td>Indicates the binning used (across track x along track)</td>
</tr>
</tbody>
</table>

General Metadata File Field Contents

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>shifting</td>
<td>Indicates the sensor applied right shifting</td>
</tr>
<tr>
<td>masking</td>
<td>Indicates the sensor applied masking</td>
</tr>
<tr>
<td>radiometricScale-Factor</td>
<td>Provides the parameter to convert the scaled radiance pixel value to radiance. Multiplying the Scaled Radiance pixel values by the values, derives the Top of Atmosphere Radiance product. This value is a constant, set to 0.01</td>
</tr>
<tr>
<td>reflectanceCoefficient</td>
<td>The value is a multiplicative, when multiplied with the DN values, provides the Top of Atmosphere Reflectance values</td>
</tr>
</tbody>
</table>

The remaining metadata fields are only included in the file for L1B RapidEye Basic products.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spacecraftInformationMeta-</td>
<td>Name of the XML file containing attitude, ephemeris and time for the 1B image</td>
</tr>
<tr>
<td>dataFile</td>
<td></td>
</tr>
<tr>
<td>rpcMetadataFile</td>
<td>Name of XML file containing RPC information for the 1B image</td>
</tr>
</tbody>
</table>

File Naming Example: Ortho Tiles

The General XML Metadata file will follow the naming conventions as in the example below.

Example: **2328007_2010-09-21_RE4_3A_visual_metadata.xml**
2. Unusable Data Mask File

All PlanetScope and RapidEye Ortho Tile products will be accompanied by an unusable data mask file.

The unusable data mask file provides information on areas of unusable data within an image (e.g. cloud and non-imaged areas). As mentioned previously, the pixel size after orthorectification will be 3.125 m for PlanetScope and 5 m for RapidEye. It is suggested that when using the file to check for usable data, a buffer of at least 1 pixel should be considered. Each bit in the 8-bit pixel identifies whether the corresponding part of the product contains useful imagery:

- Bit 0: Identifies whether the area contains blackfill in all bands (this area was not imaged). A value of “1” indicates blackfill.
- Bit 1: Identifies whether the area is cloud coverage. A value of “1” indicates cloud covered. Cloud detection is performed on a decimated version of the image (i.e. the browse image) and hence small clouds may be missed. Cloud areas are those that have pixel values in the assessed band (Red, NIR or Green) that are above a configurable threshold. This algorithm will:
 - Assess snow as cloud;
 - Assess cloud shadow as cloud free;
 - Assess haze as cloud free.
- Bit 2: Identifies whether the area contains missing (lost during downlink) or suspect (contains downlink errors) data in the Blue band. A value of “1” indicates missing/suspect data. If the product does not include this band, the value is set to “0”.
- Bit 3: Identifies whether the area contains missing (lost during downlink and hence blackfilled) or suspect (contains downlink errors) data in the Green band. A value of “1” indicates missing/suspect data. If the product does not include this band, the value is set to “0”.
- Bit 4: Identifies whether the area contains missing (lost during downlink) or suspect (contains downlink errors) data in the Red band. A value of “1” indicates missing/suspect data. If the product does not include this band, the value is set to “0”.
- Bit 5: Identifies whether the area contains missing (lost during downlink) or suspect (contains downlink errors) data in the Red Edge band. A value of “1” indicates missing/suspect data. If the product does not include this band, the value is set to “0”.
- Bit 6: Identifies whether the area contains missing (lost during downlink) or suspect (contains downlink errors) data in the NIR band. A value of “1” indicates missing/suspect data. If the product does not include this band, the value is set to “0”.
- Bit 7: Is currently set to “0”.

The figure below illustrates the concepts behind the Unusable Data Mask file.
Figure A-1: Concepts behind the Unusable Data Mask File

File Naming

The General XML Metadata file will follow the naming conventions as in the example below.

Example: 2328007_2010-09-21_RE4_3A_visual_udm.tif
APPENDIX B – TILE GRID DEFINITION

Ortho Tile imagery products are based on the UTM map grid as shown in Figure B-1 and B-2. The grid is defined in 24km by 24km tile centers, with 1km of overlap, resulting in 25km by 25km tiles.

An Ortho Tile imagery products is named by the UTM zone number, the grid row number, and the grid column number within the UTM zone in the following format:

<ZZRRRCC>

where:

ZZ = UTM Zone Number (This field is not padded with a zero for single digit zones in the tile shapefile)
RRR = Tile Row Number (increasing from South to North, see Figure B-2)
CC = Tile Column Number (increasing from West to East, see Figure B-2)

Example:
Tile 547904 = UTM Zone = 5, Tile Row = 479, Tile Column = 04
Tile 3363308 = UTM Zone = 33, Tile Row = 633, Tile Column = 08
Due to the convergence at the poles, the number of grid columns varies with grid row as illustrated in Figure B-3.
The center point of the tiles within a single UTM zone are defined in the UTM map projection to which standard transformations from UTM map coordinates \((x,y)\) to WGS84 geodetic coordinates (latitude and longitude) can be applied.

\[
\begin{align*}
\text{col} & = 1..29 \\
\text{row} & = 1..780 \\
\text{Xcol} & = \text{False Easting} + (\text{col} - 15) \times \text{Tile Width} + \text{Tile Width}/2 \\
\text{Yrow} & = (\text{row} - 391) \times \text{Tile Height} + \text{Tile Height}/2
\end{align*}
\]

where:

- \(X\) and \(Y\) are in meters
- \(\text{False Easting} = 500,000\) m
- \(\text{Tile Width} = 24,000\) m
- \(\text{Tile Height} = 24,000\) m

The numbers 15 and 391 are needed to align to the UTM zone origin.